BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Seoul X-LIC-LOCATION:Asia/Seoul BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:KST DTSTART:18871231T000000 DTSTART:19881009T020000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20230103T035307Z LOCATION:Auditorium\, Level 5\, West Wing DTSTART;TZID=Asia/Seoul:20221206T100000 DTEND;TZID=Asia/Seoul:20221206T120000 UID:siggraphasia_SIGGRAPH Asia 2022_sess153_papers_354@linklings.com SUMMARY:Scalable multi-class sampling via filtered sliced optimal transpor t DESCRIPTION:Technical Papers\n\nScalable multi-class sampling via filtered sliced optimal transport\n\nSALAUN, Geogiev, Seidel, Singh\n\nWe propose a continuous domain formulation of Wasserstein barycenters\nfor multi-clas s (-purpose) point set optimization. Our formulation is sys-\ntematically derived to handle hundreds to thousands of classes for different\nsampling applications. We develop a practical optimization scheme that is\nclosely paired with our formulation. To demonstrate the generalizability of\nour framework beyond sampling, we formalize the problem of blue-noise\nerror d istribution as a multi-class problem. This helps establish a direct\nconne ction between sampling, reconstruction and perceptual filtering in\nrender ing. The resulting formulation provide error bounds on the perceptual\nerr or which, when optimized for, gives screen space blue-noise error dis-\ntr ibution. We demonstrate the effectiveness of our framework on different\ns ampling applications like stippling, object placement and rendering.\n\nRe gistration Category: FULL ACCESS, EXPERIENCE PLUS ACCESS, EXPERIENCE ACCES S, TRADE EXHIBITOR\n\nLanguage: ENGLISH\n\nFormat: IN-PERSON URL:https://sa2022.siggraph.org/en/full-program/?id=papers_354&sess=sess15 3 END:VEVENT END:VCALENDAR