Efficient Light Probes for Real-time Global Illumination
DescriptionReproducing physically-based global illumination (GI) effects has been a long-standing demand for many real-time graphical applications. In pursuit of this goal, many recent engines resort to some form of light probes baked in a precomputation stage. Unfortunately, the GI effects stemming from the precomputed probes are rather limited due to the constraints in the probe storage, representation or query. In this paper, we propose a neural method for probe-based GI rendering which can generate a wide range of GI effects, including glossy reflection with multiple bounces, in complex scenes. The key contributions behind our work include a gradient-based search algorithm and a neural image reconstruction method. The search algorithm is designed to reproject the probes' contents to any query viewpoint, without introducing parallax errors, and converges fast to the optimal solution. The neural image reconstruction method, based on a dedicated neural network and several G-buffers, tries to recover high-quality images from low-quality inputs due to limited resolution or (potential) low sampling rate of the probes. This neural method makes the generation of light probes efficient. Moreover, a temporal reprojection strategy and a temporal loss are employed to improve temporal stability for animation sequences. The whole pipeline runs in real-time (>30 frames per second) even for high-resolution (1920x1080) outputs, thanks to the fast convergence rate of the gradient-based search algorithm and a light-weight design of the neural network. Extensive experiments on multiple complex scenes have been conducted to show the superiority of our method over the state-of-the-arts.
Event Type
Technical Communications
Technical Papers
TimeWednesday, 7 December 202211:00am - 12:30pm KST
Registration Categories