3QNet: 3D Point Cloud Geometry Quantization Compression Network
DescriptionSince the development of 3D applications, the point cloud, as a spatial description easily acquired by sensors, has been widely used in multiple areas such as SLAM and 3D reconstruction. Point Cloud Compression (PCC) has also attracted more attention as a primary step before point cloud transferring and saving, where the geometry compression is an important component of PCC to compress the points geometrical structures. However, existing non-learning-based geometry compression methods are often limited by manually pre-defined compression rules. Though learning-based compression methods can significantly improve the algorithm performances by learning compression rules from data, they still have some defects. Voxel-based compression networks introduce precision errors due to the voxelized operations, while point-based methods may have relatively weak robustness and are mainly designed for sparse point clouds. In this work, we propose a novel learning-based point cloud compression framework named 3D Point Cloud Geometry Quantiation Compression Network (3QNet), which overcomes the robustness limitation of existing point-based methods and can handle dense points. By learning a codebook including common structural features from simple and sparse shapes, 3QNet can efficiently deal with multiple kinds of point clouds. According to experiments on object models, indoor scenes, and outdoor scans, 3QNet can achieve better compression performances than many representative methods.
Event Type
Technical Communications
Technical Papers
TimeTuesday, 6 December 20222:00pm - 3:30pm KST
Registration Categories